Pricing Bermudan options under Merton jump-diffusion asset dynamics

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Pricing double-barrier options under a flexible jump diffusion model

In this paper we present a Laplace transform-based analytical solution for pricing double-barrier options under a flexible hyper-exponential jump diffusion model (HEM). The major theoretical contribution is that we prove non-singularity of a related high-dimensional matrix, which guarantees the existence and uniqueness of the solution. © 2009 Elsevier B.V. All rights reserved.

متن کامل

Pricing Asian Options Under a Hyper-Exponential Jump Diffusion Model

We obtain a closed-form solution for the double-Laplace transform of Asian options under the hyper-exponential jump diffusion model (HEM). Similar results are only available previously in the special case of the Black-Scholes model (BSM). Even in the case of the BSM, our approach is simpler as we essentially use only Itô’s formula and do not need more advanced results such as those of Bessel pr...

متن کامل

Pricing Asian Options under a General Jump Diffusion Model

We obtain a closed-form solution for the double-Laplace transform of Asian options under the hyper-exponential jump diffusion model (HEM). Similar results are only available previously in the special case of Black-Scholes model (BSM). Even in the case of BSM, our approach is simpler as we essentially use only the Ito's formula and do not need more advanced results such as those of Bessel proces...

متن کامل

Pricing forward starting options under regime switching jump diffusion models

Abstract: This paper studies the pricing of forward starting options under regime switching jump diffusion models. We suppose that a market economy has only two states, one is a stable state, the other is a high volatility state. The dynamics of a risky asset is modeled by a geometry Brownian motion when the market state is stable, otherwise, it follows a jump diffusion model. We propose two ty...

متن کامل

A New Spectral Element Method for Pricing European Options Under the Black-Scholes and Merton Jump Diffusion Models

We present a new spectral element method for solving partial integro-differential equations for pricing European options under the Black–Scholes and Merton jump diffusion models. Our main contributions are: (i) using an optimal set of orthogonal polynomial bases to yield banded linear systems and to achieve spectral accuracy; (ii) using Laguerre functions for the approximations on the semi-infi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: International Journal of Computer Mathematics

سال: 2015

ISSN: 0020-7160,1029-0265

DOI: 10.1080/00207160.2015.1070838